Table of supported functions

FunctionMeaningEquivalent Statement
\(\exp(a)\)Natural Exponential Function\(e^a\)
\(\ln(a)\)Natural Logarithm\(\log_e(a))\)
\(\log(a)\)Common Logarithm\(\log_{10}(a)\)
\(\log_b(a)\)Logarithm\(\frac{\int_1^a\frac1t\text{dt}}{\int_1^b\frac1t\text{dt}}\)
\(\operatorname{total}(L)\)Sum of all values in list\(\sum L\)
\(\operatorname{count}(L)\)Number of elements in list\(L=[L_1,\ldots,L_n];n\)
\(\operatorname{mean}(L)\)Arithmetic Mean\(\frac{1}{n}\sum_{k=1}^nL_k\)
\(\operatorname{mean}(x_1,\ldots,x_n)\)Arithmetic Mean\(\frac{1}{n}\sum_{k=1}^nx_k\)
\(\operatorname{median}(L)\)Statistical Median\(\begin{cases}(L.\kern-.15em\operatorname{sort})_\frac{n+1}{2} & n\text{ is odd}\\\frac{1}{2}\big((L.\kern-.15em\operatorname{sort})_\frac{n}{2}+(L.\kern-.15em\operatorname{sort})_\frac{n+1}{2}\big) & n\text{ is even}\end{cases}\)
\(\operatorname{median}(x_1,\ldots,x_n)\)Statistical Median\(L=[x_1,\ldots,x_n];\\\begin{cases}(L.\kern-.15em\operatorname{sort})_\frac{n+1}{2} & n\text{ is odd}\\\frac{1}{2}\big((L.\kern-.15em\operatorname{sort})_\frac{n}{2}+(L.\kern-.15em\operatorname{sort})_\frac{n+1}{2}\big) & n\text{ is even}\end{cases}\)
\(\operatorname{quartile}(L, q)\)Moore and McCabe Quartile\(\begin{cases}\frac{n+1}{4} & n\text{ is odd and }q=1\\\frac{3n+3}{4} & n\text{ is odd and }q=3\\\frac{n+2}{4} & n\text{ is even and }q=1\\\frac{3n+2}{4} & n\text{ is even and }q=3\\\end{cases}\)
\(\operatorname{nCr}(n,r)\)Binomial Coefficient\(\prod_{i=1}^r\frac{n+1-i}{i}\)
\(\operatorname{nPr}(n,r)\)r-permutation of n\(\frac{n!}{(n-k)!}\)
\(\operatorname{stdev}(L)\)Standard Deviation\(\sqrt{\frac1{n-1}\sum_{i=1}^n(L_i-L.\kern-.15em\operatorname{mean})^2}\)
\(\operatorname{stdev}(x_1,\ldots,x_n)\)Standard Deviation\(\sqrt{\frac1{n-1}\sum_{i=1}^n(x_i-\operatorname{mean}(x_1,\ldots,x_n))^2}\)
\(\operatorname{stdevp}(L)\)Population Standard Deviation\(\sqrt{\frac1n\sum_{i=1}^n(L_i-L.\kern-.15em\operatorname{mean})^2}\)
\(\operatorname{stdevp}(x_1,\ldots,x_n)\)Population Standard Deviation\(\sqrt{\frac1n\sum_{i=1}^n(x_i-\operatorname{mean}(x_1,\ldots,x_n))^2}\)
\(\operatorname{mad}(L)\)Mean Absolute Deviation\(\frac1n\sum_{i=1}^n\left|L_i-L.\kern-.15em\operatorname{mean}\right|\)
\(\operatorname{mad}(x_1,\ldots,x_n)\)Mean Absolute Deviation\(\frac1n\sum_{i=1}^n\left|x_i-\operatorname{mean}(x_1,\ldots,x_n)\right|\)
\(\operatorname{var}(L)\)Variance\(\frac1{n-1}\sum_{i=1}^n(L_i-L.\kern-.15em\operatorname{mean})^2\)
\(\operatorname{var}(x_1,\ldots,x_n)\)Variance\(\frac1{n-1}\sum_{i=1}^n(x_i-\operatorname{mean}(x_1,\ldots,x_n))^2\)
\(\operatorname{varp}(L)\)Population Variance\(\frac1n\sum_{i=1}^n(L_i-L.\kern-.15em\operatorname{mean})^2\)
\(\operatorname{varp}(x_1,\ldots,x_n)\)Population Variance\(\frac1n\sum_{i=1}^n(x_i-\operatorname{mean}(x_1,\ldots,x_n))^2\)
\(\operatorname{cov}(A,B)\)Covariance\(\sum_{i=1}^n\frac{(A_i-A.\operatorname{mean})(B_i-B.\operatorname{mean})}{N-1}\)
\(\operatorname{covp}(A,B)\)Population Covariance\(\sum_{i=1}^n\frac{(A_i-A.\operatorname{mean})(B_i-B.\operatorname{mean})}N\)
\(\operatorname{corr}(A,B)\)Pearson Correlation Coefficient\(\frac{\operatorname{cov}(A,B)}{\operatorname{stdev}(A)\operatorname{stdev}(B)}\)
\(\operatorname{spearman}(A,B)\)Spearman's Rank Correlation Coefficient\(C=[1,\ldots,A.\kern-.15em\operatorname{count}].\kern-.15em\operatorname{sort}(A)\\D=[1,\ldots,B.\kern-.15em\operatorname{count}].\kern-.15em\operatorname{sort}(B)\\\operatorname{corr}(C,D)\)
\(\operatorname{lcm}(L)\)
\(\operatorname{lcm}(x_1,\ldots,x_n)\)
\(\operatorname{gcd}(L)\)
\(\operatorname{gcd}(x_1,\ldots,x_n)\)
\(\operatorname{mod}(a,n)\)Remainder of Integer Division\(a-n\left\lfloor\frac an\right\rfloor\)
\(\operatorname{floor}(a)\)Round down
\(\operatorname{ceil}(a)\)Round up
\(\operatorname{round}(a)\)Round
\(\operatorname{round}(a,b)\)Round to \(b\) decimal places
\(\operatorname{abs}(a)\)Absolute Value\(\begin{cases}a&a\ge0\\-a&a\lt0\end{cases}\)
\(\operatorname{min}(L)\)Least element of \(L\)
\(\operatorname{min}(x_1,\ldots,x_n)\)Least of \(x_1,\ldots,x_n\)
\(\operatorname{max}(L)\)Greatest element of \(L\)
\(\operatorname{max}(x_1,\ldots,x_n)\)Greatest of \(x_1,\ldots,x_n\)
\(\operatorname{sign}(a)\)Signum\(\begin{cases}-1&a<0\\0&a=0\\1&a>0\end{cases}\)
\(\sin(a)\)Trigonometric Sine\(\sum_{n=1}^\infty\frac{(-1)^{n-1}}{(2n-1)!}a^{2n-1}\)
\(\cos(a)\)Trigonometric Cosine\(\sum_{n=1}^\infty\frac{(-1)^{n}}{(2n)!}a^{2n}\)
\(\tan(a)\)Trigonometric Tangent\(\frac{\sin a}{\cos a}\)
\(\csc(a)\)Trigonometric Cosecant\(\frac1{\sin a}\)
\(\sec(a)\)Trigonometric Secant\(\frac1{\cos a}\)
\(\cot(a)\)Trigonometric Cotangent\(\frac1{\tan a}\)
\(\sinh(a)\)Hyperbolic Sine\(\frac12(e^a-e^{-a})\)
\(\cosh(a)\)Hyperbolic Cosine\(\frac12(e^a+e^{-a})\)
\(\tanh(a)\)Hyperbolic Tangent\(\frac{\sinh a}{\cosh a}\)
\(\operatorname{csch}(a)\)Hyperbolic Cosecant\(\frac1{\sinh a}\)
\(\operatorname{sech}(a)\)Hyperbolic Secant\(\frac1{\cosh a}\)
\(\coth(a)\)Hyperbolic Cotangent\(\frac{\cosh a}{\sinh a}\)
\(\arcsin(a)\)